Coincidence electron / ion imaging with a fast frame camera
نویسندگان
چکیده
Submitted for the DAMOP15 Meeting of The American Physical Society Coincidence electron/ion imaging with a fast frame camera WEN LI, SUK KYOUNG LEE, YUN FEI LIN, STEVEN LINGENFELTER, ALEXANDER WINNEY, LIN FAN, Wayne State University — A new timeand positionsensitive particle detection system based on a fast frame CMOS camera is developed for coincidence electron/ion imaging. The system is composed of three major components: a conventional microchannel plate (MCP)/phosphor screen electron/ion imager, a fast frame CMOS camera and a high-speed digitizer. The system collects the positional information of ions/electrons from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of MCPs processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of electron/ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide. We further show that a time resolution of 30 ps can be achieved when measuring electron TOF spectrum and this enables the new system to achieve a good energy resolution along the TOF axis. Wen Li Wayne State University Date submitted: 20 Jan 2015 Electronic form version 1.4
منابع مشابه
PET Radiopharmaceuticals
PET (positron emission tomography) is a powerful imaging technique that can provide quantitative information on the distribution of positron emitter labeled radiopharmaceuticals (PET radiopharmaceuticals) in the body. Positrons (ß+) are positively charged beta particles. They are emitted when the atom is proton rich. A positron has only a transient existence. After losing all of its kinetic ene...
متن کاملPET Radiopharmaceuticals
PET (positron emission tomography) is a powerful imaging technique that can provide quantitative information on the distribution of positron emitter labeled radiopharmaceuticals (PET radiopharmaceuticals) in the body. Positrons (ß+) are positively charged beta particles. They are emitted when the atom is proton rich. A positron has only a transient existence. After losing all of its kinetic ene...
متن کاملFemtosecond coincidence imaging of multichannel multiphoton dynamics.
The novel technique of femtosecond time-resolved photoelectron-photoion coincidence imaging is applied to unravel dissociative ionization processes in a polyatomic molecule. Femtosecond coincidence imaging of CF3I photodynamics illustrates how competing multiphoton dissociation pathways can be distinguished, which would be impossible using photoelectron or ion imaging alone. Ion-electron energy...
متن کاملA new electron-ion coincidence 3D momentum-imaging method and its application in probing strong field dynamics of 2-phenylethyl-N, N-dimethylamine.
We report the development of a new three-dimensional (3D) momentum-imaging setup based on conventional velocity map imaging to achieve the coincidence measurement of photoelectrons and photo-ions. This setup uses only one imaging detector (microchannel plates (MCP)/phosphor screen) but the voltages on electrodes are pulsed to push both electrons and ions toward the same detector. The ion-electr...
متن کاملVelocity map photoelectron-photoion coincidence imaging on a single detector.
Here we report on a new simplified setup for velocity map photoelectron-photoion coincidence imaging using only a single particle detector. We show that both photoelectrons and photoions can be extracted toward the same micro-channel-plate delay line detector by fast switching of the high voltages on the ion optics. This single detector setup retains essentially all the features of a standard t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015